

4.3.13: Automated Content Analysis of Rare Earth Research from 1965 to 2018

Xuda Lin a, Xing Li c, Tai-Yuan Huang a, Fu Zhao a,b

150

1965

800

Count 400

Paper 200

400

1965

1975

1975

onut 100

Paper

^a Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana ^b School of Mechanical Engineering, Purdue University, West Lafayette, Indiana ^c Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana b

Background

The exponential growth of scientific literature – which we call the 'big literature' phenomenon – has created great challenges in literature comprehension and synthesis. The traditional manual literature synthesis processes are often unable to take advantage of big literature due to human limitations in time and cognition, creating the need for new literature synthesis methods to address this challenge. Automated Content Analysis (ACA) is a specific algorithm that is designed to treat large texture information and provide a visual output. It has been developed since 1990s, and the original process includes sifting, classifying and simplifying of published research. In this project, we are looking into how the research topic changes in the last 50 years, and make some expectations in the developing trend in the future.

Methodology

Data Preparation

- ► 53,836 abstracts about rare earth elements (REEs) from Scopus
- ► Impact factor ≥1.00
- ➤ Time range from 1965 to 2018

Manual Reading

Dictionary

Construction

ACA

Process

- ► 50 papers
- ► to get a comprehensive understanding about different topics in REEs

► REEs:

cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium (Ho), lanthanum (La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), promethium (Pm), samarium (Sm), scandium (Sc), terbium (Tb), thulium (Tm), ytterbium (Yb), and yttrium (Y).

▶ REEs Application:

Alloy, Catalyst, Ceramics, Coating, Doping, Fluorescence, Hybrid_Vehicle, Laser, Magnet, Nanoparticle, Nuclear, Optical, Phosphors, Superconductor, X-ray

► REEs Manufacturing Research

Beneficiation, Annealing, Antiferromagnetism, Chemical Treatment, Electrolysis, Melting, Metallurgy,

► Mines and Rocks

Allanite, Apatite, Bastnasite, Brannerite, Carbonatite, Eudialyte, Euxenite, Fergusonite, Florencite, Loparite, Monazite, Pegmatite, Perovskite, Placer, Pyrochlore, Tellurite, Xenotime, Zircon

► Environmental and Economics

Economic, Environmental, Policy, Recycle

1: concept Choose seeding process Stage 2: concept definition CONCEPTS Thesaurus grounded, word disambiguation Stage 3: text classification INDEXED VERSION OF LITERATURE Choose classification resolution QUADRANT CONCEPT products ANALYSES REPORTS MAPS

Fig. 7 The Automated Content Analysis Procedure (Nunez-Mir, 2016)

Results

Fig. 1 Paper Publication vs Time for different countries

Fig. 2 REEs Application vs Time

—Optical

-Alloy

—Catalyst

---Ceramics

---Coating

—Cerium

2005

Fig. 3 RE Elements vs Time

Year

1995

1995

1985

1985

-- Annealing —Antiferromagnetism

-Metallurgy

---Mining —Beneficiation 2015

—Chemical Treatment

Year —Electrolysis Fig. 4 REEs Manufacturing vs Time

2005

Fig. 6 Environmental and Economic Topics vs Time

-Environmental

-Economic

-Policy

-Recycle